Mind-reading robot teachers keep students focused
An automated system that detects when online pupils are distracted or snoozing and then uses tricks to keep them alert
WE ALL remember dozing off during a boring class at school. A robotic teacher that monitors students' attention levels and mimics the techniques human teachers use to hold their pupils' attention promises to end the snoozing, especially for students who have their lessons online. Tests indicate the robot can boost how much students remember from their lessons.
Bored, bored… asleep
Intelligent tutoring systems that use virtual teachers to interact with students could play a crucial role in the expanding field of online education. The trouble with online courses is that it is usually impossible to know whether the student is concentrating and engaging with the lesson. Unlike virtual teachers, human teachers have a series of tricks for keeping their classes focused - changing the pitch or tone of their voice, for example, or gesturing to emphasise points and engage with their audience. Bilge Mutlu and Dan Szafir at the University of Wisconsin-Madison wanted to find out whether a robot could use some of the same techniques to improve how much a student retains.
"We wanted to look at how learning happens in the real world," says Mutlu. "What do human teachers do and how can we draw on that to build an educational robot that achieves something similar?"
The pair programmed a Wakamaru humanoid robot to tell students a story in a one-on-one situation and then tested them afterwards to see how much they had remembered. Engagement levels were monitored using a $200 EEG sensor to monitor the FP1 area of the brain, which manages learning and concentration. When a significant decrease in certain brain signals indicated that the student's attention level had fallen, the system sent a signal to the robot to trigger a cue. "We can't do it just at any given moment, we have to try and do it like human teachers do," says Mutlu.
The robot teacher first told a short story about the animals that make up the Chinese zodiac, in order to get a baseline EEG reading. Next, the robot told a longer 10-minute story based on a little-known Japanese folk tale called My Lord Bag of Rice, which the student was unlikely to have heard before.
During this story the robot raised its voice or used arm gestures to regain the student's attention if the EEG levels dipped. These included pointing at itself or towards the listener - or using its arms to indicate a high mountain, for example. Two other groups were tested but the robot either gave no cues, or sprinkled them randomly throughout the storytelling. Afterwards, the students were asked a few questions about the Chinese zodiac to distract them before being asked a series of questions about the folk tale.
As the team had expected, the students who were given a cue by the robot when their attention was waning were much better at recalling the story than the other two groups, answering an average of 9 out of 14 questions correctly, as compared with just 6.3 when the robot gave no cues at all. The results were presented at the Conference on Human Factors in Computing Systems in Austin, Texas, earlier this month.
"One-on-one tutoring has been repeatedly shown to give dramatic results in student learning, but the main problem with it is the cost, and that it's just difficult to scale," Ng says. "The vision of automatically measuring student engagement so as to build a more interactive teacher is very exciting."
No comments:
Post a Comment